# Vibrational Spectroscopic Studies on the en-Td-Type Benzene Clathrates: $\mathrm{M}($ ethylenediamine $) \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ $\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg ) 

ERGÜN KASAP and ZİYA KANTARCI*<br>Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Teknikokullar, 06500 Ankara, Turkey.

(Received: 30 January 1995; in final form: 8 May 1995)


#### Abstract

IR spectra of $\mathrm{Mn}(\mathrm{en}) \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$, and IR and Raman spectra of $\mathrm{Cd}(\mathrm{en}) \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$ clathrates are reported. The spectral features suggest that the first two compounds are similar in structure to the later two Td-type clathrates.


Key words: en-Td-type clathrate, inclusion compounds, ethylenediamine, IR spectra, Raman spectra.

## 1. Introduction

ESR spectral studies have shown that the host framework of the en-Td-type benzene clathrate compound $\mathrm{Cd}(\mathrm{en}) \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, where en is ethylenediamine and M is Cd or Hg , is a good reservoir for the cyclohexadienyl, $\mathrm{C}_{6} \mathrm{H}_{7}$, radical which is thermally unstable in $\gamma$-irradiated neat benzene or solutions of benzene in common organic solvents [1]. In these compounds the host framework is formed from the infinite-Cd-en-Cd-en- chains extending along the $a$ - and $b$-axes alternately and the tetrahedral $\mathrm{M}(\mathrm{CN})_{4}$ moieties arranged between the consecutive crossing - Cd -en-Cd-en- chains with the connections of the N -ends at the Cd atoms in the chains [2, 3]. This structure provides two kinds of cavities, $\alpha$ and $\beta$, for the guest benzene molecules. The $\alpha$ cavity is a rectangular box similar to those in the Hofmann type hosts, while the $\beta$ cavity is a twisted biprism, as has been illustrated in a number of previous papers [1, 2, 4]. The clathrate compounds having this type of host structure reported to date have only been confined to those with a Cd metal atom in the octahedral environment [1-5].

Kasap and Kantarci [5] recently prepared two novel Td-type benzene clathrates, $\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$ and presented some vibrational spectral data. Now we have prepared two new ethylenediaminemanganese(II)tetracyanometallate(II) benzene $(1 / 2)$ clathrates, $\mathrm{Mn}(\mathrm{en}) \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{G}(\mathrm{M}=\mathrm{Cd}$ or $\mathrm{Hg}, \mathrm{G}=$ benzene;

[^0]abbreviated to Mn-en-M-2G), for the first time. Our aim in this paper is to throw light on the structure of these compounds in powder form by the spectral correlation between these and Cd -en- $\mathrm{Cd}-2 \mathrm{G}$ for which the structure is known [3]. In this study the IR spectra of $\mathrm{Mn}(\mathrm{en}) \mathrm{Cd}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{Mn}(\mathrm{en}) \mathrm{Hg}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, and the IR and Raman spectra of $\mathrm{Cd}(\mathrm{en}) \mathrm{Cd}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{Cd}(\mathrm{en}) \mathrm{Hg}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, (abbreviated to $\mathrm{Cd}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$ and $\mathrm{Cd}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}$, respectively) clathrates are reported. The Raman spectra of the former two compounds (light brown) could not be obtained by using 488 or 515 nm laser lines. A previous paper by Iwamoto and Shriver gives very limited vibrational data with tentative assignments for the latter two compounds [2].

## 2. Experimental

All chemicals used were reagent grade (Merck) and used without further purification.

The clathrates Mn -en- $\mathrm{Cd}-2 \mathrm{G}$ and Mn -en- Hg -2 G were prepared by adding slightly more than one millimole of ethylenediamine and one millimole of $\mathrm{K}_{2} \mathrm{M}(\mathrm{CN})_{4}$ ( $\mathrm{M}=\mathrm{Cd}$ or Hg ) solution in water to one millimole of $\mathrm{MnCl}_{2}$ solution in water saturated with benzene. The brown precipitate was filtered, washed with water, ethanol and ether, successively, and kept in a desiccator containing molecular sieves and saturated benzene vapour.

The clathrate compounds $\mathrm{Cd}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$ and $\mathrm{Cd}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}$ were prepared by the method already described in Ref. [2].

The freshly prepared compounds were analyzed for Mn and Cd by AAS (Philips, PU 9200), and $\mathrm{C}, \mathrm{H}$ and N by a CHN analyser (LECO, CHN-600) with the following results (found \%/calculated \%): $\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right) \mathrm{Cd}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ : $\mathrm{Mn}=11.41 / 11.26, \mathrm{Cd}=23.26 / 23.05, \mathrm{C}=44.03 / 44.29, \mathrm{H}=3.97 / 4.13, \mathrm{~N}=16.81 / 17.23$. $\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right) \mathrm{Hg}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}: \quad \mathrm{Mn}=9.87 / 9.54, \quad \mathrm{C}=36.24 / 37.51, \quad \mathrm{H}=3.38 / 3.50$, $\mathrm{N}=13.97 / 14.59$.

IR spectra of the compounds were recorded in the range of 4000 to $200 \mathrm{~cm}^{-1}$ on Perkin-Elmer 1330 and 621 spectrometers, which were calibrated using polystyrene, and an indene/camphor/cyclohexane standard solution. The samples were prepared as mulls in nujol and hexachlorobutadiene between CsI windows and as KBr discs. The Raman spectra of the Cd -en- $\mathrm{Cd}-2 \mathrm{G}$ and Cd -en- $\mathrm{Hg}-2 \mathrm{G}$ compounds (in powder form) in a home-made spinning cell were excited using the 514.5 nm line of a Spectra-Physics Model 2016-Ar ${ }^{+}$ion laser and recorded on a Jobin-Yvon U1000 spectrometer which was calibrated against the laser plasma emission lines.

## 3. Result and Discussion

The clathrate compounds studied show no major difference in the IR spectra between the nujol (or hexachlorobutadiene) mulls and KBr pellet. The similarities between the IR and Raman spectral features of the clathrate compounds suggest
that they also have similar structural features. These, in turn, suggest that the degrees of interactions of the benzene, en ligand and $\mathrm{M}(\mathrm{CN})_{4}$ species with their surroundings are almost the same for each clathrate. It will be most convenient to divide the vibrations into three groups arising from the ethylenediamine ligands, from the $\mathrm{M}(\mathrm{CN})_{4}$ units and from the benzene moieties, respectively. The vibrational wavenumbers of the bands in the spectra of these species are tabulated in Tables I-III, respectively, together with some relevant spectral data for comparison.

The prototype of the studied compounds, Cd -en- $\mathrm{Cd}-2 \mathrm{G}$, crystallises in the noncentrosymmetric space group $P 4_{2} 22\left(D_{4}^{5}\right)$ with $Z=2$ [3]. This means all the chemical entities in the crystal are theoretically non-centrosymmetric. The en in this single crystal structure is disordered [3] so that the application of the correlation method appears not to be effective for the en molecule. The site symmetries of $\mathrm{M}(\mathrm{CN})_{4}$ and benzene are $D_{2}$ and $C_{2}$, respectively [6]. The correlation diagram for the point groups of $\mathrm{M}(\mathrm{CN})_{4}\left(T_{d}\right)$ and benzene $\left(D_{6 b}\right)$ with the factor group $D_{4}$, through sites $D_{2}$, and $C_{2}$, respectively, is shown in Figure 1. Figure 1 indicates that the effect of low site symmetries on the degenerate modes of $\mathrm{M}(\mathrm{CN})_{4}$ and benzene species should, in principle, be observed in the infrared and Raman spectra in the form of splitting, but, no indication of such splittings could be observed in the spectra at room temperature (Tables II and III). The absence of splittings in the spectra suggests that the magnitudes of the splittings are too small to permit resolution. As can be seen from the correlation diagram (Figure 1), the effect of low site symmetry on the vibrational activities is only valid for the benzene moieties. Some infrared active modes under the site symmetry are weakly observed (Table III) as discussed below.

### 3.1. Vibrations of Ethylenediamine

The assignments and the wavenumbers of the vibrational bands of en observed in the spectra of the clathrate compounds under study are given in Table I, together with the spectral data for en in the liquid phase [8] on which the assignments are based. Our assignments for the localized vibrations are in good agreement with those reported previously for $\mathrm{Cd}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$ and $\mathrm{Cd}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}$ [2].

In the gas phase, Yokozeki and Kuchitsu [9] have shown that the en molecule possesses conformational isomerism and that the dominant form (more than $95 \%$ ) is the gauche conformation. This gives the molecule $C_{2}$ symmetry. The IR and Raman spectral data (depolarization ratios, frequency shifts and group frequencies correlations) for the en molecule and its deuterated derivatives in the liquid and solid phases have been reported to be in accord with the gauche and trans conformations, respectively [8]. From the results of IR spectroscopic and powder X-ray difraction data [7] the en ligand molecules in $\mathrm{Cd}(\mathrm{en}) \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Ni}$ or Pd$)$ were suggested to have a trans form, while the single crystal X-ray difraction studies have shown that the en molecules in Cd-en-Cd-2G are in a gauche conformation [3]. The gauche form may be due to the packing requirement for keeping the host
TABLE I. The vibrational wavenumbers ( $\mathrm{cm}^{-1}$ ) of ethylenediamine in $\mathrm{M}-\mathrm{en}-\mathrm{M}^{\prime}-2 \mathrm{G}$ clathrates.

| Assignment ${ }^{\text {a }}$ | Liquid en ${ }^{a}$ |  | Cd-en-Cd-2G |  | Cd-en-Hg-2G |  | $\begin{aligned} & \text { Mn-en-Cd-2G } \\ & \text { IR } \end{aligned}$ | $\begin{aligned} & \text { Mn-en-Hg-2G } \\ & \text { IR } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IR | Ra | IR | Ra | IR | Ra |  |  |
| $\nu\left(\mathrm{NH}_{2}\right), \mathrm{B}$ | 3349 vs | 3355 m | 3316 m | 3316 m | 3318 m | 3315 m | 3314m |  |
| $\nu\left(\mathrm{NH}_{2}\right), \mathrm{A}$ | 3279 vs | 3290 vs | 3283w | 3287s | 3285w | 3286s | 3283w | 3283w |
|  | 3189 ms | 3185m | nm | nm | nm | nm | nm | nm |
| $\nu\left(\mathrm{CH}_{2}\right), \mathrm{B}$ | nm | 2904sh | 2974w | nm | 2974w | nm | 2970w | 2970w |
| $\nu\left(\mathrm{CH}_{2}\right), \mathrm{A}$ | 2922vs | 2925vs | 2943m | 2943s | 2945m | 2943m | 2949 m | 2950w |
|  | 2853vs | 2852 vs | 2881w | nm | 2882w | nm | 2880w | 2879w |
| $\delta\left(\mathrm{NH}_{2}\right), \mathrm{A}, \mathrm{B}$ | 1595vs | 1599 mw | 1590s | nm | 1591s | nm | 1596s | 1593 vs |
| $\delta\left(\mathrm{NH}_{2}\right), \mathrm{A}, \mathrm{B}$ | nm | nm | 1574vs | 1578w | 1574vs | 1577w | 1576 vs | 1574vs |
| $\delta\left(\mathrm{CH}_{2}\right), \mathrm{A}, \mathrm{B}$ | 1458 mw | 1478s | 1458 m | 1457w | 1458 m | 1456w | 1460 m | 1458 m |
| $\omega\left(\mathrm{CH}_{2}\right), \mathrm{A}, \mathrm{B}$ | 1356 mw | 1359m | 1383 vw | nm | nm | nm | 1384 vw | 1382 vw |
| $t\left(\mathrm{NH}_{2}\right), \mathrm{A}, \mathrm{B}$ | 1254 vw | 1242w | nm | nm | nm | nm | nm | nm |
| $\nu$ (skeletal), A | 1096 m | 1100 s | 1072 vs | nm | 1073vs | nm | 1078vs | 1080 vs |
| $\nu$ (skeletal), B | 1054mw | 1062w | nm | nm | nm | nm | nm | nm |
| $\nu$ (skeletal), A | 991sh | 987 m | nm | nm | nm | nm | $n \mathrm{~m}$ | nm |
| $\omega\left(\mathrm{NH}_{2}\right), \mathrm{A}$ | 900 vs | nm | 991 vs | nm | 990 vs | nm | 994vs | 993 vs |
| $\tau\left(\mathrm{CH}_{2}\right), \mathrm{A}$ | nm | 880sh | nm | nm | nm | nm | nm | nm |
| $\rho\left(\mathrm{CH}_{2}\right), \omega\left(\mathrm{NH}_{2}\right), \mathrm{A}$ | 830 m | 838 s | 769 vw | 773 s | 768 vw | 772 s | 770 vw | 768w |
| $\delta(\mathrm{NCCN}), \mathrm{B}$ | 513 mw | 512 vw | 502 s | nm | 505s | nm | 508 s | 507 s |
| $\delta(\mathrm{NCCN}), \mathrm{A}$ | 475w | 475 m | nm | nm | nm | nm | 445 m | 447w |
| (CN) torsion, A, B | nm | 340 m | nm | nm | nm | nm | nm | nm |
| (CC) torsion, A, B | nm | 180 sh | nm | nm | nm | nm | nm | nm |

[^1]TABLE II. Cyanide group vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ for the M-en-M'-2G clathrates.

| Assignment | $\mathrm{K}_{2} \mathrm{Cd}(\mathrm{CN})_{4}{ }^{\text {a }}$ |  | $\mathrm{K}_{2} \mathrm{Hg}(\mathrm{CN})_{4}{ }^{\text {a }}$ |  | Cd-pyz-Cd-G ${ }^{\text {b,c }}$ |  | Cd-pyz-Hg-G ${ }^{\text {b,c }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IR | Ra | IR | Ra | IR | Ra | IR | Ra |
| $\nu_{1}(\mathrm{CN}) \mathrm{A}_{1}$ | - | 2149 | - | 2149 | - | 2180vs | - | 2180vs |
| $\nu_{5}(\mathrm{CN}) \mathrm{F}_{2}$ | 2145 | - | 2146 | - | 2176vs | 2172sh | 2176vs | 2172sh |
| Hot band? | - | - | - | - | 2164vw | 2162vw | 2165 vw | 2162vw |
| ${ }^{1} / 2(\mathrm{MC}) \mathrm{A}_{1}$ | - | 327 | - | 335 | - | 354vw | - | 354 vw |
| $\%_{6}[\nu(\mathrm{MC})$ | 316 | - | 330 | - | 365 vs | - | 368 vs | - |
| $+\delta(\mathrm{NCM}) \mathrm{F}_{2}$ |  |  |  |  |  |  |  |  |
| $\nu_{7}[\nu(\mathrm{MC})$ | 250 | - | 235 | - | - | - | - | - |
| $+\delta(\mathrm{NCM}) \mathrm{F}_{2}$ |  |  |  |  |  |  |  |  |


| Assignment | Cd-en-Cd-2G |  | Cd-en-Hg-2G |  | $\mathrm{Mn}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$$\mathrm{IR}$ | $\begin{aligned} & \mathrm{Mn}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G} \\ & \mathrm{IR} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IR | Ra | IR | Ra |  |  |
| $\nu_{1}(\mathrm{CN}) \mathrm{A}_{1}$ | - | 2170 vs | - | 2175vs | - | - |
| $\nu_{5}(\mathrm{CN}) \mathrm{F}_{2}$ | 2167 vs | 2163sh | 2169vs | 2168sh | 2168vs | 2168 vs |
| Hot band? | 2135 vw | - | - | - | 2132vw | - |
| $\nu_{2}(\mathrm{MC}) \mathrm{A}_{1}$ | - | - | - | - | - | - |
| $\nu_{6}[\nu(\mathrm{MC})$ | 354s | - | 355s | - | 352s | 356 s |
| $+\delta(\mathrm{NCM}) \mathrm{F}_{2}$ |  |  |  |  |  |  |
| $\nu_{7}[\nu(\mathrm{MC})$ | 269w | - | 270 m | - | 270w | 268w |
| $+\delta(\mathrm{NCM}) \mathrm{F}_{2}$ |  |  |  |  |  |  |

${ }^{\mathrm{a}, \mathrm{b}}$ Taken from Refs. [10 and 14], respectively.
${ }^{c} \mathrm{Cd}($ pyrazine $) \mathrm{Cd}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$.
${ }^{d} \mathrm{Cd}($ pyrazine $) \mathrm{Hg}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$.
$\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder.
framework of $\mathrm{Cd}\left[\mathrm{Cd}(\mathrm{CN})_{4}\right]$ similar to the regular framework of Td-type clathrates $\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cd}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Hg}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ [4]. The fact that en has the gauche form in Cd-en-Cd-2G and the spectral similarities between Cd-en-Cd2 G and the other clathrate compounds under study suggests that the en ligands in $\mathrm{Cd}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}, \mathrm{Mn}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$ and $\mathrm{Mn}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}$ compounds also have gauche ( $\delta$ ) forms. For the gauche configuration and consequent $C_{2}$ symmetry, all vibrational modes are IR or Raman active.

## 3.2. $\mathrm{M}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$ Group Vibrations

In assigning the bands attributable to the $\mathrm{M}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$ ion in the spectra of our clathrate compounds we refer to the work of Jones who presented vibrational data for the salts $\mathrm{K}_{2} \mathrm{Cd}(\mathrm{CN})_{4}$ and $\mathrm{K}_{2} \mathrm{Hg}(\mathrm{CN})_{4}$ in the solid phase [10]. The structural studies on these salts have shown that the $\mathrm{K}-\mathrm{NC}$ distance is ca. $2.9 \AA$ in $\mathrm{K}_{2} \mathrm{Cd}(\mathrm{CN})_{4}$ [11] and $\mathrm{K}_{2} \mathrm{Hg}(\mathrm{CN})_{4}$ [12] while the $\mathrm{Cd}-\mathrm{NC}$ distance is ca. $2.3 \AA$ in Td-type host structures [3, 4, 13]. Therefore, they can be used as references to
TABLE III. The vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ of benzene in the $\mathrm{M}-\mathrm{en}-\mathrm{M}^{\prime}-2 \mathrm{G}$ clathrates.

| Assignment ${ }^{\text {a }}$ | Liquid Benzene |  | Cd-pyz-Cd-G ${ }^{\text {d,e }}$ |  |  |  | Cd-en-Cd-2G |  | Cd-en-Hg-2G |  | $\begin{aligned} & \text { Mn-en-Cd-2G } \\ & \text { IR } \end{aligned}$ | $\begin{aligned} & \mathrm{Mn}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G} \\ & \text { IR } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{IR}^{\text {b }}$ | $\mathrm{Ra}^{\text {c }}$ | IR | Ra | IR | Ra | IR | Ra | IR | Ra |  |  |
| $2 \nu_{8}$ | - | 3166 | - | 3163 vw | - | nm | - | nm | - | nm | - | - |
| $\nu_{29} \mathrm{E}_{1 u}$ | 3073 | - | 3088s | - | 3088s | - | 3085 m | - | 3086 m | - | 3080 m | 3082m |
| $\nu_{8}+\nu_{19}$ | 3075 | - | - | - | - | - | 3066m | - | 3064m | - | 3061w | 3062 m |
| $\nu_{13} \mathrm{~B}_{1 u}$ | 3048 | - | 3068m | - | 3068m | - | 3028 s | - | 3032s | - | 3025s | 3029s |
| $\nu_{2} \mathrm{~A}_{19}$ | - | 3062 | - | 3062m | - | 3062m | 3062 vw | 3060s | 3060 vw | 3059s | 3061 vw | 3058vw |
| $\nu_{7} \mathrm{E}_{29}$ | - | 3050 | - | 3053sh | - | 3053sh | 3042vw | 3044s | 3045vw | 3044s | 3040 vw | 3041 vw |
| $\nu_{5}+\nu_{17} \mathrm{E}_{1 u}$ | 1955 | - | 1951w | - | 1951w | - | 1960w | - | 1964w | - | 1959w | 1960w |
| $\nu_{8} \mathrm{E}_{29}$ | - | 1586 | - | 1586 m | - | 1586 m | - | 1584m | - | 1585 m | - | - |
| $\nu_{10}+\nu_{17}$ | 1815 | - | - | - | - | - | 1818w | - | 1820w | - | 1814w | 1815w |
| $\nu_{19} \mathrm{E}_{1 \sim}$ | 1479 | - | 1479 m | - | 1479 m | - | 1477s | - | 1479s | - | 1474s | 1474s |
| $\nu_{14} \mathrm{~B}_{2 u}$ | 1309 | - | - | - | - | - | 1309w | - | 1310w | - | - | - |
| $\nu_{9} \mathrm{E}_{2 g}$ | - | 1177 | - | 1177 m | - | 1177 m | 1176vw | 1176w | 1169vw | 1175w | 1172vw | 1173 vw |
| $\nu_{15} \mathrm{~B}_{2 u}$ | 1149 | - | 1147sh | - | 1147sh | - | 1147vw | - | 1146vw | - | 1150 vw | 1148 vw |
| $\nu_{18} \mathrm{E}_{1 u}$ | 1036 | - | 1035m | - | 1035m | - | 1033m | - | 1034m | - | 1032m | 1032 m |
| $\nu_{1} \mathrm{~A}_{1 g}$ | - | 991 | - | 991 vs | - | 991 vs | - | 992vs | - | 992 vs | - | - |
| $\nu_{5} \mathrm{~B}_{2 g}$ | 989 | - | - | - | - | - | - | - | - | - | - | - |
| $\nu_{17} \mathrm{E}_{2 u}$ | 966 | - | 975vw | - | 974vw | - | - | - | - | - | - | - |
| $\nu_{10} \mathrm{E}_{1 g}$ | - | 850 | - | 855w | - | 854 vw | 853 vw | nm | 849vw | nm | 848 vw | 848vw |
| $\nu_{11} \mathrm{~A}_{2 u}$ | 670 | - | 685 vs | - | 685 vs | - | 695sh | - | 700sh | - | 689 sh | 688sh |
|  | - | - | 681 vs | - | 681 vs | - | 683 vs | - | 688 vs | - | 676 vs | 680 vs |
|  | - | - | - | - | - | - | 676sh | - | 679sh | - | 668 sh | 668 sh |
| $\nu_{6} \mathrm{E}_{2 g}$ | - | 607 | - | 605 | - | 608 | 604 vw | 605 | 601 vw | 606 m | 602 vw | 603 vw |

[^2]

Fig. 1. Correlation diagram for the symmetry species of the $\mathrm{M}(\mathrm{CN})_{4}$ ion and benzene molecule in the Cd-en-Cd-2G clathrate. $\mathrm{R}=$ Raman active; $\mathrm{IR}=$ Infrared active; - = inactive.
account for the vibrational changes when the stiffer $\mathrm{Cd}-\mathrm{NC}$ bonding takes place [14]. The vibrational data for $\mathrm{M}(\mathrm{CN})_{4}$ groups in the compounds studied are given in Table II together with the vibrational wavenumbers of $\mathrm{K}_{2} \mathrm{Cd}(\mathrm{CN})_{4}$ and $\mathrm{K}_{2} \mathrm{Hg}(\mathrm{CN})_{4}$. In Table II is also listed the wavenumbers of the IR and Raman spectra of the benzene clathrates Cd (pyrazine) $\mathrm{Cd}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ and Cd (pyrazine $) \mathrm{Hg}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ [14] for comparison.

The assigned wavenumbers for the $\mathrm{M}(\mathrm{CN})_{4}$ group in the compounds under study appear to be much higher than those for isolated $\mathrm{M}(\mathrm{CN})_{4}$ units (Table II). Such frequency shifts have been observed for other Td-type clathrates, $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4}$. $2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg$)$ [5], $\mathrm{Cd}($ pyrazine $) \mathrm{M}^{\prime}(\mathrm{CN}) 4 . \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}^{\prime}=\mathrm{Cd}\right.$ or Hg ) [14], $\mathrm{M}\left(4,4^{\prime}\right.$-bipyridyl) $\mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}: \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg$)$ [15] and Td-type host complexes M (pyridine) $)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd} ; \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg$)$ $[16,17]$, in which both ends of the CN group are coordinated and explained as the mechanical coupling of the internal modes of $\mathrm{M}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$ with the metal (Cd-NC) vibrations [5, 14-17].

### 3.3. Vibrations of Benzene

The benzene molecule in the structure of $\mathrm{Cd}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$ is on the $C_{2}$ site, and, in principle, all vibrational selection rules for the free benzene molecule ( $D_{6 h}$ ) are lost (Figure 1). The other clathrates studied may also be expected to have similar symmetry properties, since their spectral features are very similar.

The assignments and the wavenumbers of the bands arising from the enclathrated benzene observed in the IR and Raman spectra of Cd-en-Cd-2G, Cd-en-Hg-2G,

Mn-en-Cd-2G and Mn-en-Hg-2G clathrates are given in Table III, together with the wavenumbers of benzene in the liquid phase $[18,19]$ and in some clathrates [14] on which the assignments are based. The most outstanding spectral features are the following.

All of the vibrational bands of the free benzene are observed in the IR spectra of the clathrates (Table III), suggesting that the selection rules for the benzene molecule under its intrinsic symmetry ( $D_{6 h}$ ) are lost. This is possibly due to the low site symmetry (Figure 1) of each of the two benzene molecules in the clathrate. The CH out-of-plane vibrational band $\left(A_{2 u}\right)$ in the IR spectra of the clathrate compounds appears as a triplet (Table III). This vibrational mode appears as a doublet for $\mathrm{Cd}($ pyrazine $) \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}^{\prime}=\mathrm{Cd}\right.$ or Hg$)$ [14] and $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg$)$ [5] and a singlet for Hofmann-type clathrates $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ni} \mathrm{Cu}, \mathrm{Zn}$ or Cd$)$ [20], and Td-type clathrates $\mathrm{Cd}\left(4,4^{\prime}\right.$-bipyridyl) $\mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}^{\prime}=\mathrm{Cd}\right.$ or Hg$)$ [5, 15]. In the case of clathrates with doublet and in our case with triplet features, the splittings are due to the strong host-guest interactions (i.e., crystal field effects) [14]. In the case of clathrates with a single band, because of the larger cavities due to the ligands, the host-guest interactions are expected not to be effective for splitting. Another feature of the CH out-of-plane $\left(A_{2 u}\right)$ vibrational band is that it is found to be shifted to higher frequency (Table III) frorn that of liquid benzene ( $670 \mathrm{~cm}^{-1}$ ). Similar positive shifts were observed for Hofmann-type [18-20] and Td-type [2, 5, 14, 15] clathrates. This upward shift was explained for the Hofmanntype clathrates [20] by the presence of a weak hydrogen bond between $\pi$ electrons located above and below the plane of the benzene ring and the ammonia molecules of the host lattice. The same was stated for other members of Hofmann-type [1921] and Hofmann-Td type [5] clathrates. Therefore, we reasonably suggest that the frequency shifts in our clathrates are due to the $\pi$ electron donation from the benzene ring to the hydrogen atoms of the ethylenediamine which has a more electrophilic character caused by the bidentate coordination.

The preceeding discussion considered as a whole leads us to draw the conclusion that the clathrates $\mathrm{Cd}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}, \mathrm{Mn}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$ and $\mathrm{Mn}-\mathrm{en}-\mathrm{Hg}-2 \mathrm{G}$ are similar in structure to the en-Td-type clathrate $\mathrm{Cd}-\mathrm{en}-\mathrm{Cd}-2 \mathrm{G}$.

## Acknowledgements

The authors wish to thank two referees for very useful comments and to the Gazi University Research Fund for purchase of the Jobin Yvon U1000 Raman spectrometer.

## References

1. T. Iwamoto, M. Kiyoki and N. Matsuura: Bull. Chem. Soc. Jpn. 51, 390 (1978).
2. T. Iwamoto and D. F. Shriver: Inorg. Chem. 11, 2570 (1972).
3. S. Nishikiori and T. Iwamoto: J. Incl. Phenom. 3, 283 (1985).
4. H. Yuge and T. Iwamoto: J. Incl. Phenom. 14, 217 (1992).
5. E. Kasap and Z. Kantarci: J. Incl. Phenom. 20, 33 (1995).
6. W. G. Fateley and F. R Dollish, N. T. McDevitt and F. F. Bentley: Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley-Interscience, London (1972).
7. T. Iwamoto: Inorg. Chim. Acta 2, 269 (1968).
8. M. G. Giorgini, M. R Pelletti, G. Paliani and R S. Cataliotti: J. Raman Spectrosc. 14, 16 (1983).
9. A. Yokozeki and K. Kuchitsu: Bull. Chem. Soc.Jpn. 44, 2926 (1971).
10. H. Jones: Spectrochim. Acta 17, 188 (1961).
11. B. Ziegler and D. Babel: Z. Naturforsch 46B, 47 (1991).
12. P. N. Gerlach and B. N. Powell: J. Chem. Phys. 85, 6004 (1986).
13. H. Yuge and T. Iwamoto: J. Chem. Soc. Dalton Trans. 2841 (1993).
14. N. Ekici, Z. Kantarci and S. Akyüz: J. Incl. Phenom. 10, 9 (1991).
15. S. Bayari, Z. Kantarci and S. Akyüz: J. Incl. Phenom. 17, 291 (1994).
16. Z. Kantarci: Commun. Fac. Sci. Univ. Ankara 37, 53 (1988).
17. Z. Kantarci, N. Karacan and B. Davarcioglu, J. Mol. Struct. 53, 323 (1994).
18. P. C. Painter and J. L. Koening, Spectrochim. Acta 33A, 103 (1977).
19. J. E.. D. Davies, A. B. Dempster and S. Suzuki: Spectrochim. Acta 30, 1183 (1974).
20. S. Akyüz. A. B. Dempster and R. L. Morehouse: Spectrochim. Acta 30A, 1989 (1974).
21. S. Suzuki, W. J. Orville-Thomas, A. Sopková and J. Skorsepa: J. Mol. Struct. 54 (1979).
22. E. B. Wilson: Phys. Rev. 45, 706 (1934).

[^0]:    * Author for correspondence.

[^1]:    ${ }^{\text {a }}$ Taken from ref. [8].
    $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{nm}=$ not measured.

[^2]:    ${ }^{a}$ Taken from Ref. [22]. ${ }^{b}$ Taken from Ref. [18]. ${ }^{\text {c }}$ Taken from Ref. [19]. ${ }^{\mathrm{d}}$ Taken from Ref. [14]. ${ }^{\mathrm{e}} \mathrm{Cd}($ pyrazine $) \mathrm{Cd}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6} .{ }^{\mathrm{f}} \mathrm{Cd}($ pyrazine $) \mathrm{Hg}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$. $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{nm}=$ not measured.

